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It im well-known that the molution of m mtationuy problem for the NavierStokee equmtionm 
im unique ‘in the l mmll’ (for a mmmll Reynoldm number, mmall maam forcem, etc.). However, 

experimentm and approximate calculationm uming Galerkin’m method l how thet, in geneml, 

there im no uniquenenm. For example, am experiment mhowm, a secondary mtationuy flow 

mmy uime with the lomm of mtmbility of a Couette flow between rotating cylinderm. Up to now, 

however, the non-uniquenemm ham not been rigoroumly proved in a mingle amme. 

In the prement paper the quemtion of the bifurcation of mtationuy flowm of l vimaoum 

incompremmible fluid im conmidered. In l ection 1 the theory of bifurcation of l olutionm of 

opermtionml equationm, developed in [I] im mhown to be applicable to thim problem. Thum, 

the question of bifiucation of the Nmvier-Stokem equationm reducem to the determination of 

the odd-multiple chumcterimtic valuem which aorrempond to m linearized problem. 

In section 2 m twodimenmiontal problem of the NavierStokem equetionm im conmidered 
with e periodicity condition on the mtremm function with rempect to x, y oorremponding to 

the pedodm A&&r. 

In [2] the mtability of the molution of thim problem & - - (y/u) corn y wmm invemtigated 

(in the umuml lineu formulation) and it wmm mhown that mtability mlwmys ocourm for Q, > 1 
mnd im lomt for l uffioiently amall&, fixed (y/v) and l mall v. A proof of the method of 
lineuir8tion im given in 141. 

In mection 2 of the pre8ent pmper it im mhown that for 6 >/l the mtationuy molution & 
im atmble ‘in the large’ mnd unique (2.2). mnd that for any & < 1 and sufficiently large 
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values of the parameter A = (y/v’) new stationary solutions branch off from the solution 

$0. (Revising the result from [2] by the method of section 2 (cf. lemma 2.1) it is not dif- 

ficult to show that the solution ii/u is unstable for A > 1 (~.a) where A (a,) is the point (1: 

bifurcation found in section 2 (2.3).) 

A basic result on non-uniqueness is formulated in theorem 2, where the exact number 

of points of bifurcation are determined depending on ~0 and some conclusions about the 

spectrum are drawn. From theorem 2 theorem 3 easily follows in which an example of the 

generation of a time periodic flow when there is loss of stability of a stationary flow is 

given as well as an example of the generation of a conditionally periodic flow when there 

is loss of stability of a periodic flow. 

1. On the bifurcation of stationary solutions of the NavierStokes equations. 

1.1. Reduction to on operational equation. We shall consider the stationary problem of 

the Navier-Stokes equations in the bounded domain D with the boundary S 

where F, a are given vectors ; V’(X), P (4 are the unknown velocity and pressure. We 

shall employ the usual convention of omitting the summation sign for the repeated index. 

We shall assume that F, a depend on a parameter y and that for any y (- = < y < DO) 

the problem (1.1) admits a solution of the form 

v’ = vo (4, p = PO (501 7) (1.2) 

where v. no longer depends on y. It is well known that for small y this solution is unique. 

Later we shall be interested in solutions of problem (1.1) which are different from (1.2). 

We shall seek them in the form 

v’ = 7v + 7v0, p = (l/v) p + PO (1.3) 

For determining v and p we shall then obtain the problem 

div v G s = 0, ZI Is = Cl 

@=7/v) (1.4) 

Along with the problem (1.4) we shall consider the linearized problem which corres- 

ponds to it 

1 ++-, aui 
axi - 0, Ills=0 (1.5) 

t 

and the problem conjugate to (1.5) 

Aw, = - hvdc wls=O 
(1.6) 
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We shall reduce these three problems to equations with completely continuous oper- 

ators. This is achieved essentially by inversion of the operators which correspond to 

A = 0. We shall introduce a Hilbert space H, - a complete set of smooth solenoidal vectors 

which vanish near S, by the norm generated by the scalar products 

(u, w)~{, =\ Eedx=\rot u.rotwdx 
b b 

According to a theorem of imbedding [3], the inequality 

I/uIIL~ = (\ I ulpdx)*lP <cpIIull~, (1 < P < 6) 
b 

(1.7) 

is correct for all U E H,, where c 
P 

depends only on the domain D and on p, but not on 

u. 

The vectors V, U, w E H,, which differ from zero and satisfy the integral identities 

(1.9) 

(1.10) 

(1.11) 

for all @ E H, and some & the so-called eigen-value, will be called the generalized 

eigen-vectors of the problems (1.4) -(1.6) , respectively. From the results of [4] (cf. also 

[S] ) it follows that for sufficiently smooth F, S and a the generalized eigen-vectors together 

with some functions p (4, q (x), and Q (x) will generate solutions of the problems (1.4)- 

(1.6) in the classical sense. 

We shall now determine the operators K, A, A* which act in H, by requiring that the 

integral identities 

(~v,~)H~=-\[V~k~+Vk~+Vk~]Q)~dx 

D k 

(Au, @)H, = - 
S( 

V,,k $$.+nk$ (l+dx 
k ) 

D 

be satisfied for any v, u, w, @E H,. 

Lemma 1.1. The operators K, A, A* are completely ‘continuous in H,. 

(1.12) 

(1.13) 

(1.14) 
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The proof for the operator K is given in [4]. For A and A* it is exactly the same. 

Lemma 1.2. The problems of determining the generalized aigsn-vectors defined in 

(1.9) -(l.ll) are equivalent to the corresponding operational equations 

v=?UKv, u =hAu, w=?kA*w (1.15) 

The validity of this lemma follows immediately from the definitions of the generalized 

eigan-vectora and the operatora K, A, A*. 

Lemma 1.3. The operator A is a Fra’chet differential of the operator K at the point 

v=o. 

Proof. It is neceaaary to show that 

From (1.12) and (1.13) we conclude that 

(Ku - AU,@)& = - s uk .++dx = \ uxrotu.cDdx (1.17) 

D D 

We ahall net @ = Ku - AU in (1.17). Evaluating the right-hand side of (1.17) by 

meana of the Hb’lder inequality with indicespt = 4, pld = 2, ps = 4 and applying 

the imbedding inequality (1.81, we obtain 

IIKU - A$$‘< jJul[~,.ljrot ul/~,IlKu - Au&,< C:ll”ll~tZ.lI:KU - A&x 

Thna 

IIKU - Aull~a < C4” 11 +L (1.181 

and hence (I.161 follows. 

Lsmmo 1.4. The operator A* is the conjugate of the operator A in HI. 

Proof. Let w and@ be arbitrary vectors from HI. Integrating (1.14) by parts, we find 

(A* w, a),, =- a [ Wi vok 2 + Q)k ‘z] dx = (W, A@)H, (1.19) 

which proves the lemma. 

We oan now apply the theory of bifurcation of solutions of non-linear operational 

equations [I] to the determination of stationary flows which are different from (1.2). 

The real number & is called a point of bifurcation of the operator K, if for any 

E, 6 > 0 a characteristic number h of the operator K can be found such that ]h - &] < E 

even though ]]dlH, < 6 f or some eigen-vector v of the operator K which corresponds to this 
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characteristic number. Only the characteristic numbers of its F&hat differential at zero, 

the operator A, can be points of bifurcation of the operator K. 

In the case under consideration a theorem of M.A. Kraanoael’akii [l] gives the follow- 

ing : let & be a characteristic number of the operator K having odd multiplicity. Then the 

number & is a point of bifurcation of the operator K , * moreover, a continuous branch of 

eigen-vectors of the operator K corresponds to this point of bifurcation. 

We shall explain the concepts applied here. Let & be a characteristic number of the 

operator A and u be any of the eigen-vectors corresponding to it. We shall consider the 

following problem : 

u = &Au, Ul = hfy4u, + uo, . . . ) 
U, = hJuu, + &_I, . . . (1.20) 

As is well known, the complete continuity of the operator A implies that only a finite 

number r of them are resolvable. In this connection r is called the rank of the eigen-vector 

u. 

If r = 1 we shall say that the eigen-vector u is simple. The vectors IQ, up, . . ., ~~-1 

are called adjointa to the eigen-vector U. The linear envelope of all the eigen-vectors and 

adjoint vectors corresponding to the given characteristic number & is called the invariant 

aubapace of the operator A which corresponds to the characteristic number &. 

The dimension n of this snbapace is called the multiplicity of the characteristic 

number Ao. 

If n = 1, & is then called a simple characteristic number; if n > 1, & is called a 

multiple characteristic number. 

Something can be learned about the spectrum of the operator K (i.e., about the total- 

ity of its characteristic values) with the help of the following consideration. For every x 

obtained from the characteristic numbers of the operator A the index of the stationary point 

v = 0 of the vector field (I - K) v is equal to unity in absolute magnitude and changes mign 

when h passes through an odd-multiple characteristic number of the operator A. On the 

other hand, the calcnlation of the rotation of the vector field I - K on spheres of large 

radius turns out well in many cases. 

For example, in [4] it is shown to be equal to + 1, if the vector flux a through every 

component of the boundary S is equal to zero. In this case we obtain (cf. [1]) that the 

interval between two characteristic numbers of the operator A, where the index of the 

stationary point v = 0 is - 1, entirely contains the spectrum of the operator K. 

1.2. On determining the multiplicity of a choractcristic number. It was shown above 

that to prove the existence of a point of bifurcation of the operator K it is necessary 

firstly to establish that the operator A has a real characteristic number and secondly to 

show that it is an odd multiple. But .the operator is not self-adjoint and, in general, can not 
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have real characteristic values. For example, if v. (x) represents the motion of the fluid 

as a solid body, then real eigen-values do not exist. Moreover, in this case the stationary 

solution (I.21 is unique for any y (these facts follow immdediately from (1.9) and (1.10) if 

it is assumed here that 0 = V, @ = u respectively, and if it is noted that the right- 

hand sides now vanish). 

Sometimes it is convenient to consider the operator A on the complex envelope H, of 

the space H, and to use the following simple lemma in establishing the reality of an eigen- 

number and the simplicity of the eigen-values. 

Lemma 1.5. Let & be a characteristic number of a real (i.e., transformed real 

vectors in the system) linear operator .4 acting in H, . In order that & be real and have 

the rank 1, it is necessary and sufficient that to every eigen-vector u with characteristic 

number & there correspond at least one eigen-vector W of the conjugate operator A* which 

has the same characteristic number and which is not orthogonal to u 

(1.211 

Proof. For the proof we note that a necessary and sufficient condition for solving the 

equation 

u,=hoAu,+u 

is the satisfaction of the equality 

(u, WT)H, = 0 

(1.22) 

(I.231 

where w is any solution of the equation w = J,,,*A*w. If X, is real, then h,* = Au, 

and the need for condition (1.21) is demonstrated. 

Now let (1.211 be satisfied. Then we have 

(UP w)H, = (id U, w)H, = A,, (u, A*+$, = h, (u, &-w,,, = $7 @I w)H, (1*24) 
and, since (U, W)H, # 0, we obtain h, = ho*. From (1.211 the unsolvability of equation 

(1.22) now follows; hence, u is a simple eigen-vector. The lemma is proved. 

It is important to note that approximate values of & and of the eigen-vectors can be 

used to check condition (1.21). This, incidentally, permits the existence of real positive 

eigen-values in the instability spectrum of Couette flow to be established; in [6] eigen- 

values with a positive real part were found. 

Broad classes of linear operators with simple eigen-vectors exist, such as, for ex- 

ample, the self-adjoint operators. However, even for such operators the calculation of the 

multiplicity of an eigen-number is a difficult problem. As an example we shall consider the 

problem of the eigen-values for ‘he Laplace operator in the rectangle (0 f z < TC / ~1, 

0 < y <TC) with the conditic, i’- xp the function vanish on the boundary. The eigen-values 
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are the numbers hkl = - (c&L? + la) (k, I = 0, 1, 2, . . .; &, # 0). If a’ is 

irrational, then they are all simple. For rational U’ multiple eigen-values can also be 

found. Thus for u = 1 all of the hkl with k f 1 are multiples. 

Sometimes the uniqueness of an eigen-vector can be obtained by narrowing down the 

apace in which there is a solution. For example, let the problem 

U” = - h (U + Us), u (- n) = u (n), U’ (- n) = u’ (n) (1.25) 

be solved. 

Turning to the operator d’/dx’, it can be reduced to an eqoatiou with a completely 

continuous operator. The problem on the eigen-values of this Frgchet differential is equi- 

valent to the boundary value problem (1.25) with the I)’ term discarded. The characteristic 

values will be hk = ka and the eigen-functions 9~. = Sin kx, (pb, = COS kx correspond 

to each of them. Since the rank of & is equal to 1, we obtain that its multiplicity is equal 

to x. However, if solutions of (1.25) which are odd with respect to x are sought. then the 

fUnCtiOII $k, is ‘eliminated’, the eigen-values xk become simple and each of them can be 

affirmed as a point of bifurcation. 

2. An example of non-uniqueness of a stationary Ilow. 

2.1. Solutions of the two-dimensional stationary Novirr-Stoker equations. We shall 

consider the equations 

vAv = (v*V) v + VP - F, div v = 0 (2.1) 

under the condition of periodicity of the velocity with respect to x, y with the periods 

%I /a,, 2n respectively. In addition, we shall require that the condition 

(2.2) 

be satisfied, where D is the rectangle {I r 1 < x / CC,, 1 9 [ < ST}, and b is an unknown 

vector. We shall take F, = - T sin y, F, = 0, b = 0. Ry introducing the stream 

function I/I the problem is reduced to determining a solution of the equation 

VA=* = &A$r - $,A$, - ?’ ~0s Y (2.3) 

which is periodic with respect to x, y with the periods 2~ / a,,, 2~. In order to fix the 

arbitrary additive in the determination of $,, we shall further introduce the condition 

s 
qdxdy = 0 (2.4) 

D 

The problem (2.3) and (2.4) obviously has the solution 

*,o = - r I v co9 y (2.5) 
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The substitution 

$ = T / v (%I - cos y) 

reduces equation (2.3) IO the form 

A%o = A [(po~A’pw - ‘~,,&q+,~ i- sin Y (8 / a+) @TO -I- %)I 

The corresponding lfnesrized problem has the form 

A%# = h sin y (a / ax) (A’p -I- cp) (A = T/V’) 

(2.6) 

(2.7) 

the adjoint problsm is 

A’@=- h (1 + A) (a / az) (@ sin y) (2.8) 

The functions cpo, cp, @ must ffnslly satisfy the condition of periodicity with respect 

to x, y snd the condition (2.4). 

The concepts of the previous section apply to the investigation of the problem (2.1)- 

(2.3). The only requirement is to define the space H, in a different way: instead of 

vanishing on the boundary it should be required that the vectors of HI now satisfy the con- 

dition of psriodicity with respect to x, y as well as the homogeneous condition (2.2). How- 

ever, it is more convenient to deal with stream functions here. 

We shall define the Hilbert space H, as the closed set of smooth functions, which 

satisfy condition (2.4) and sre periodic with periods k / a,, 2n with respect to z, y and 

by the norm, generated by the product 

We shall define the operators L, B, B* which act in H,, requiring that the integral 

identities 

VT, WH, = - 5 sin y (Q-J + cp) (3% dx dy 

(B*cp, @)II~ = \ ; + A) (cp sin y) CD, dxdy 
D 

be satisfied for any cp, @ E Hr. As in section 1 (cf. lemmas l.l-1.4), it is easily 

verified that L, B, B* are completely continuous, B is a F&hat differential of the oper- 

ator L, B* is adjoint to the operator B, and the problems (2.6), (2.7). and (2.8) are equi- 

valent, respectively, to the operstional eqostions 
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%=wh (2.9) 

cp =I&# (2.10) 

ul = hB*o 
(2.11) 

2.2. The condition of uniquenets ond stability. Theorem 2.1. Let C& &I. Then, what- 

ever v > 0 and y are, the stationary solution (2.5) is aniqae, and all aolations of the 0111 

steady NavierStokes eqaation 

13Aq / dt + &,A$, - $xAqv - vAv = - 7 CO9 I/ (2.12) 

which are periodic with respect to x, y with periods 2fi / CZ,, 2n tend toward it by the 

normHIas~+~. 

Proof. We shall assame that $ = $+, + 0 in (2.12). The eqaation which 

@ = CD (5, y, t), satiafiee has the form 

Maltiplying this eqaation A@ + @ and integrating over the rectangle D, we obtain 

1 d -- 
2 dt 

5 [(A@)” - (V@)21 dm-& + v \ [(VAO)a - (A@)r] c&u& = 0 (2.14) 
D D 

We shall expand @ in a Fourier series in z, y 

@ (2, Y, t) = ckl exp[~(aLx+Wl 

k.l=-co 

We then obtain 

J1” = (VcD)s dxdg 
s 

k,l 

(2.15) 

(2.16) 

The ineqaalities 

K12 < K,2 

J1” < J: < J1” (2.17) 

(Kls = J: - J1’, K? = Jd - JA 
(2.18) 

K;>‘T J,= (2.19) 
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are easily derived from (2.16) for uo >/ 1. 

From (2.14) we derive the relation 

1 d _- 
2 dt 

K,’ = - VK; < - vK,B, z < - VK, (2.20) 

from which follows 

x1 (t) < e-“t K, (0) 
(2.21) 

For or. > 1 it followe from (2.19). (9 21) that 

J,’ (f) = 
\ 

(AO)ad~+O as t+w 

and the theorem ia proved in thin cane. 

(2.22) 

If h - 1, we then obtain 

@t = cl&& + c_l,oe-fx + coleiV + c0,-1f+ 
0 = @I + @I, 

@)z= 2 ck, expW+W (2.23) 

P+l’>1 

We note that 
(2.24) 

K,’ = % x (P + I”) (P + P - 

P+l'>l 

1) t ckl ,a>f 1 (A@,,)’ d4/ = J,B (t), 

D 4 

From (2.21) it followe that JI (4 + 00 0 aa t + 00. But Ja* = Js* -/- Joa, where 

J,” (1) = \ cD,gdxdy (2.25) 

Hence, it remaina to prove that lo (t) + 0 as t + m. Substituting (2.23) into (2.13), 

multiplying the reanlt by a1 md integrating over D, we obtain 

f $ J; + vJ: = \ ha,, ((I$&&, - G&&b,,) dx.dy 
D 

(2.26) 

Using the simple bound 

the Buniakovakii inequality and the inequality (2.17) for aa,, we derive 

; --$ Jo2 + vJo2 < --$ J,, JfL2 

from (2.26) and taking (2.24) and (2.21) into account this gives the bound 

Jrl w 6 Jo (0) 

(2.27) 

(2.28) 
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Hence I,, (t) + 0 as t + 00. The theorem is proved. 

2.3. The spectrum of the linearized problem and bifurcation. Every non-trivial solution 

of the problem (2.8) which corresponds to a given characteristic number A is a linear com- 

bination of solutions of the form 

@ = +x 5 (- l)*cneinu (2.29) 
Tl=--CO 

where a = /CCL, (k is an integer) and the coefficients cn satisfy the infinite system of linear 

algebraic equations (n = 0, + 1, t_ 2, . .) 

at&, + c,-1 - C,,l = 0 ( 

2 (r&S + .a)2 

UT% = -x a (US - 1 + ?a*) 
(2.30) 

We shall s,eek solutions of the system (2.30) such that cn + 0 as InI + 00. From (2.30) 

it then follows that 1 TZ IkC, + 0, also, whatever k is. Setting 

pn = c, 
C n-1 

we reduce (2.30) to the form 

(2.31) 

It follows from (2.31) that for any K 

Pk=-&+ * 
=k+l + - * * 

(2.32) 

The continued fraction (2.32) converge since on + + 00 as n + m (cf. [7] ). From (2.31) 

there follows another expression for pk 

Pk = ak-1 + 1 I 

'k-2 
’ 

4k-Q + . . . 
(2.33) 

Equating the right-hand sides of (2.32) and (2.33) to each other with k = 1, we oh? .in 

the following equation for determining the characteristic values & taking into account 

that 4_n = 4,: 

40 i -- =- 1 1. - 
2 41 +- 

f (A) 

42+x+... 
(2.34) 

It is easy to verify that the right-hand sides of (2.32) and (2.33) coincide for all k 

provided that (2.34) is satisfied. If x is a real root of equation (2.341, then the non-trivial 

solution of the system (2.30) with Ic,I + 0 a* n + m is unique to within a constant factor I I 

and is given by the formulas 

co = 1, c, = p1p2 * * * pn (n>O) 

Gl = (POP-l. * * PntJ’ @Co) 
(2.35) 
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For definitsneaa, let A> 0, and u > 0. From what comes later (cf. lemma 2.3) it 

follows that cz moat be less than 1. Then (10 < 0 and ok > 0 for k f 0. Now from (2.32) for 

k > 0 and from (2.33) for k < 0 it follows that 

I PxI<$y -+o (k-,-km) 
(2.36) 

Pk > a-1 - + fx (k-t-00) 

With the help of (2.36) it is easy to verify that (2.35) gives a solution of the system 

(2.30) with Ic,I + 0 aa InI + m. 

Equation (2.34) ia derived in [2] ; there it is also shown that cn # 0 (n = 0, 

F 1, * . a) for any solution with Ic,,I + 0 as InI + 00 and, hence, the introduction 

quantities pn is valid. 

of the 

Lcmmu 2.1. Let 0 < u < 1. Equation (2.34) then has a positive root A= X(U) and, 

moreover, haa only thin one root. 

Proof. We have 

For f (h) (A > 0) 

is valid. 

From (2.37) and 

00 1 a2 -- 
2 =~l_ua2 

the bound 

(2.37) 

(2.38) 

(2.38) it is seen that - ‘/tau > f (A) for small A= 0. We shall 

show that the converse inequality is valid for large A. For this it is sufficient to establish 

that 

hf (h) -+ + 00 as h++ m 

But for f(X) the bound 

fQ)>&+$+ 
a2 + a4 + . . . + a211 + 0 W-2) 

. ..+2= 
1 + 0 (h-2) 

(2.39) 

obtains. 

Setting 

we derive from (2.39) that 
n 

lim hf(h)>x b,k as ~,-+a, 
k=I 

(2.40) 
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The right-hand side of (2.40) tends to infinity as n + m. Therefore, hf (A) + + o. 
as ?k -+ 00. 

Thus, equation (2.34) has a positive root. In order to prove its uniqueness, we shall 

show that x f(x) is a monotonically increasing function. We have 

(2.41) 

When A increases, the terms of this fraction with the odd numbers decrease and the 

terms with the even numbers do not change. Hence, h f (A) increases. The lemma is proved. 

.Lemmo 2.2. The positive root h = x (CC) of equation (2.34) increases monotonically 

withuforO<a<l. 

Proof. We shall rewrite (2.34) in the form 

1 1 
1 - a3 

h 
- = U3ctl + - 1 

a-3ar + - a3a3 + . . . 
(2.42) 

The left-hand side of this equation is an increasing function of CL. The proof will be 

complete if it is established that the right-hand side of (2.42) is a decreasing function of 

U. And this follows from the fact that the continued fraction (2.42) decreases when its 

odd terms increase and its even terms decrease and, in addition, from the fact that a%,, 

increases with a 

$ a3a, = 4a tua + nB) 

h (a” - 1 + ny 
[%4 + 3 (n2 - 1) a2 + n2 (n” - I)1 > 0 (n>,i) 

and a-‘a, decreases 

$am8an = - ha5 4 (aa - + 1 
(a* 

AS) + 
ny 

[a’ + 3nw -+ 2n2 (n’L - 1) 1 < 0 (n>,U 

Lemma 2.3. As u + 1 the positive root of equation (2.34) h = k (a) + + 00. As 

CC +O the root 3L (a) ---f v/2. For a > 1 there are no real characteristic numbers. 

Proof. By virtue of (2.34) and (2.38) 

a3 a0 -=-- 
1 - aa 2 h = V(5)<+2 (a’;i)’ 

and, hence, 

(a*+ i -0) (2.43) 

Further, from (2.34) it follows that 
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Purr& to the limit as u -t 0 in (2.44) and noting that 

1 
o<rl<x 30 (cl + O), b,,b,-+ - 1 (u-to) 

we obtain 

Finally, the non-existence of a root for u > 1 follows immediately from (2.34) since 

in the case nnder consideration the left-hand and right-hand sides of the equation have 

different signs for any real A. If u = 1, then equation (2.34) has no meaning hut it follows 

from (2.30) that cu = 0 and, after finding cr. c, , . . . successively from (2.30) for n = 1, 

2, . . . . we obtain that cn -r+m as n +Do. Hence, there are no real characteristic numbers 

in this case also. The lemma is proved. 

Lemma 2.4. Let 0 <LX, < 1. Then equations (2.11) and (2.10) have exactly [l/ad 

positive* (and as many negative) characteristic numbers. Each of them has a multiplicity 

equal to 2. 

Proof. Let a = auk < 1; k is a positive integer. Then equation (2.11) has the eigen- 

function (2.291, where the cn are defined by the equalities (2.351, and the characteristic 

number h. = k (auk) w ic corresponds to it is a positive root of equation (2.34) (cf. h’ h 

lemma 2.1). 

The system (2.30) is invariant with respect to the substitutions CL --t - U, 

c, --> (- VI)?,. Therefore, the eigen-function obtained from this substitution into (2.29) 

will also correspond to the same characteristic number h = h (Q/C) .From lemmas 2.1 

and 2.2 it follows that there are no other eigen-functions with the eigen-number h (au/?) . 

We shall establish that the multiplicity of 3, (a,&) is equal to 2, if we show 

rank is equal to 1. The real eigen-functions have the form @ = clal f c~@~, 

@I= f (Y) eior + f* @) e-ia.c, Qz = i [f (y) eizX - f* (y) e-iasl 

where 

that its 

in which 

(2.45) 

(2.46) 

l [I/a,] denotes the number of positire integers less than l/U,. 
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It is immediately verified that from the eigen-functions of problem (2.7) or equation 

(2.10) there will be 

‘p1 = g (y) &ax + g* (Y) e-tax, (~a = i [g (g) eiax - g* (p) ~‘~~1 (2.47) 

where 

g (y) = 5 d,,einv, &= -% 
aa + ns - i 

7%=---m 

We shall note one more relation needed for what follows. Multiplying (2.7) by ACT + Cp 

and integrating over D, we obtain 

\ (~&Vc)a dxdy - \ (@#dry = 0 (k=i, 2) 

D D 

Taking (2.47) into account, we rewrite the equality (2.48) in the form 

5 (aa + na)a (a* + na - I) d,,* = 0 
s=--co 

(2.48) 

(2.49) 

We shall now calculate the quantities ((pi, @k)H,. We have 

(2.50) 

(cpl, (D1)H, = 1 Q-J~. A@, dxdy = g ‘i (-l)+l (n” -I- c?)* (a” i- na - 1) dn* 
D n=--oo 

or, taking (2.49) into account, 

((PI, Q)I)R. = T x (n” + a9) (aa + nS - 1) A*> 0 (2.51) 

n==1.3,5,... 

Later, we shall convince ourselves directly that 

(% @JH. = ((Pzc O& = 0 
(2.52) 

Thus, if 9 = Cl% + %%z h %! are real constants) is any eigen-function of pro- 

blem (2.9) and @ = cIOI + c@,, then 

(cp, @)H, = cl” ((PI, a3 + cz” ((Pzc 0 > Q (2.53) 

According to lemma 1.5 this means that the rank of the eigen-number h = h (CC,& 

is equal to 1. Thus, the multiplicity of this characteristic number is equal to 2. The lemma 

is proved. 

Lammu 2.5. The rotation of the vector field Q,cp = (1 - bL) Cp [cf. (2.9)] on a 

sphere of sufficiently large radius with center at 0 is equal to + 1. 

Proof. It is sufficient to prove [I] that the deformation 

QttIJ = (1 - thL)e, (O< t\< 1) 

brings about the homotopyof the vector field 4 and the unit field !&Cp = Cp. To do this 
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it is necessary to establish only that all of the zeros of the field at lie in a sphere of 

known radios (which is independent of t). But if !&# = 0, then, according to the defini- 

tion of the operator L. we have 

(2.54) 

for any CD E H,. Setting 

in (2.54), we find 

114 I&,’ = s W ~0s y dx dsr 
D 

from which, applying the Bnniakovakii inequality and the inequality 19 II\< I)$ u + 

flPYll 9 we conclude that 

119 /a, < 2 II cos Y II& = I-h v2 (2.56) 

This completes the proof of the lemma. 

Theorem 2.2. Let 0 < a, < 1. Th en there exist exactly m = [I la,] positive 

numbers O<h,<h,<. . . < ii,,,, which are points of bifurcation of equation (2.9). 

To each of them there corresponds a continuous branch of eigen-functions of equation (2.9) 

which are non-trivial solutions of problem (2.6). The numbers - AI, - As, . . ., - h, 

are also points of bifurcation. The spectrum of equation (2.9) contains ail of the intervals 

(A,, Qc (%t, U, - * *, (&k_l, ha), and also the intervals which are symmetric to them 

the negative semi-axis. If m is odd, then it also contains the intervals (-00, -&,), 

(JJnIY m). 

Proof. Let Hoobe a aubspace of H,, consisting of functions which satisfy the condi- 

tion* (- 5, - y) = I/I (5, y). It is immediately verified that the operators L, B, E* 

act in H,q In addition, the spectrum of operator B considered in Hs’coincides with the 

spectrum of operator E on all of H, and consists of the numbers ‘f h (cQ,), 7 ?,. (@,), . . ., 

F 7L (ma,), where M = [i /a,1 (cf. 1 emma 2.4). To a characteristic number 

A#* = h (CC& (k = 1, 2, . . .( ?78) there corresponds only one eigen-function aI, defined 

in (2.45). The rank of AA according to lemma 2.4 is equal to 1. Thus, all of the character 

iatic numbers F h,, T h,, . . ., F h, are simple. Hence, according to a theorem of 

M.A. Kraanoael’skii [I] stated in section 1, all of them are points of bifurcation and to 

each of them corresponds a continuous branch of eigen-functions of the operator L. 

If X belongs to one of the intervals indicated in the condition of the theorem, then the 

index of the fixed point #o = 0 of the operator L is equal to - 1. And therefore, according 

to lemma 2.5, the rotation of the vector field (I - I+,) q!~ on large spheres is equal to +l for 

such h that correspond to non-trivial solutions of equation (2.9). The theorem is proved. 
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2.3. An example of the generation of a periodic regime. We shall consider the problem 

(2.I), (2.2) with the previously used quantity F = (- r sin y, 0) and with b = (u, 0). 
This problem has the stationary solution 

Do1 E 7 I v sin y -I- U, vo2 = 0, PO=0 (2.571 

The velocity vector v. has the stream function 

9; = - +y + vu 

If we assume in (2.12) 9 = qo’ + Q’, we obtain the periodicity conditions for 

0 (5, I/, t) with respect to x and y with the periods %t / a,, 2~ and the equation 

gg+ OvAcbx 
(2.58) 

- @A($, + VA@, + $ sin y L (A0 + 0) - vA2@ = 0 

Theorem 2.3. For all values of x for which equation (2.6) has non-trivial solutions, 

equation (2.58) has non-trivial solutions which are periodic with respect to time. 

Proof. For some h let there be a non-trivial solution ‘pu (Z, Y) of equation (2.6) and 

let it have a period %t / C% with respect to x (CZ is a multiple of ad. 

Then, it is easy to be convinced that 

@o = VP0 (5 - Ut, Y) (2.59) 

is a solution of problem (2.58) which is periodic with respect to time with period 

6~ = 2n / au. The theorem is proved. 

We note that the flow in (2.59) is nothing other than stationary flow in a coordinate 

system which moves along the x-axis with constant velocity U. 

We shall now make the coordinate system also move along the y-axis with velocity 

I’. It is not difficult to be convinced that the flow with the stream function 

‘Ic,= - $COS (y - vt> + uy - va: + ‘PO (z - Ut, ,y - vt) (2.60) 

presents an example of a conditionally periodic flow arising when there is loss of stability 

of a flow which is periodic with respect to time with the stream function 

9; = - $ cos (y - vt) + uy - vs 
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