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It is well-known that the solution of a stationary problem for the Navier-Stokes equations

is unique ‘in the small’ (for & small Reynolds number, small mass forces, etc.). However,
experiments and approximate calculations using Galerkin’s method show that, in general,
there is no uniqueneas. For example, as experiment shows, a secondary stationary flow

may arise with the loss of stability of a Couette flow between rotating cylinders. Up to now,
however, the non-uniqueness has not been rigorously proved in a single case.

In the present paper the question of the bifurcation of stationary flows of a viscous
incompressible fluid is considered. In section 1 the theory of bifurcation of solutions of
operational equations, developed in [1] is shown to be applicable to this problem. Thus,
the question of bifurcation of the Navier-Stokes equations reduces to the determination of
the odd-multiple characteristic values which correspond to a linearized problem.

In aection 2 a two-dimensional problem of the Navier-Stokes squations is considered
with a periodicity condition on the stream function with respect to x, y corresponding to
the periods 2r/a4,27.

In [2] the stability of the solution of this problem s = —~ (y/1) cos y was investigated
(in the usual linear formulation) and it was shown that stability always occurs for @ > 1
and is lost for sufficiently small a,, fixed (y/v) and small ¥. A proof of the method of
linearigation is given in [4].

In section 2 of the present paper it is shown that for gy 3> 1 the stationary solution tf
is stable ‘in the large’ and unique (2.2), and that for any 0o <1 and sufficiently large
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values of the parameter A = (y/1?) new stationary solutions branch off from the solution
. (Revising the result from [2] by the method of section 2 (cf. lemma 2.1) it is not dif-
ficult to show that the solution /, is unstable for A> A () where A (@) is the point of
bifurcation found in section 2 (2.3).)

A basic result on non-uniqueness is formulated in theorem 2, where the exact number
of points of bifurcation are determined depending on &, and some conclusions about the
spectrum are drawn. From theorem 2 theorem 3 easily follows in which an example of the
generation of a time periodic flow when there is loss of stability of a stationary flow is
given as well as an example of the generation of a conditionally periodic flow when there
is loss of stability of a periodic flow.

1. On the bifurcation of stationary solutions of the Navier-Stokes equations.

1.1. Reduction to an operational equation. We shall consider the stationary problem of

the Navier-Stokes equations in the bounded domain D with the boundary S

, , 0v;’ opP v’ , .
vAv‘:-_vk;x—;—{—-—ax{—Ff (i=1,2,3), leV'—'aTl—*O Vis=a (.1

where F, @ are given vectors; v'(x), P (x) are the unknown velocity and pressure. We
shall employ the usual convention of omitting the summation sign for the repeated index.

We shall assume that F, & depend on a parameter y and that for any y (— o0 <y <)

the problem (1.1) admits a solution of the form
v = 1v, (2), P =P,(z4 7) (1.2)

where Vo no longer depends on y. It is well known that for small y this solution is unique.
Later we shall be interested in solutions of problem (1.1) which are different from (1.2).

We shall seek them in the form
"=v 41V, P={UNNY)p+ P, (1.3)
For determining V and p we shall then obtain the problem

82)01 6v1-

av’]—{—ax , divvza
(A=1/%) (1.4)

A'“k[vokai+ K S —_—O, UIS:O

3

Along with the problem (1.4) we shall consider the linearized problem which corres-

ponds to it

lig] a du:
Auy = }\,[v MJ q Oui _
i 0k "5, ax + Uy axk + axi . axi O, u ls B O (1.5)

and the problem conjugate to (1.5)

owy owy, a2Q dwy; _
bw=—hou (G + 5 T am =0 wh=0
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We shall reduce these three problems to equations with completely continuous oper-
ators, This is achieved essentially by inversion of the operators which correspond to
A =0. We shall introduce a Hilbert space H, — a complete set of smooth solenoidal vectors

which vanish near S, by the norm generated by the scalar products

(u, W)y, = S o dzr = \ rot u-rotwdz 1.7
D b

According to a theorem of imbedding [3], the inequality
P 1/p
luke, = ({1uPde)” <epluly,  a<p<o )
D

is correct for all u & H,, where ¢ depends only on the domain D and on p, but not on

u.

The vectors Vv, u, W < H,, which differ from zero and satisfy the integral identities

v dvy;
(v, CD)H,=—-7»S[v0,, az 4 oy Dot "0 + "ax ]d)d (1.9)
D
(u? q))Ht = 7\48 [vok ax + k avm’ ](D.l dx (1.10)
D
D 1

for all P = I:I'l and some A, the so-called eigen-value, will be called the generalized
eigen-vectors of the problems (1.4) -(1.6), respectively. From the results of (4] (cf. also
[5]) it follows that for sufficiently smooth F, S and a the generalized eigen-vectors together
with some functions p (x), g (x), and Q (x) will generate solutions of the problems (1.4) -

(1.6) in the classical sense.

We shall now determine the operators K, 4, A* which act in H, by requiring that the

integral identities

- |y 2
(va (D)H, = Ig)[%k 9z, + v + Vg 6 ](D dx (1.12)
a 1
(4, @), = — (o 5 + e 52 ) Oy (119
D
(A*w, @)y, = \v ,,("’"" + 5k ) Dydo
) % \ bz oz; (1.14)

be satisfied for any v, u, w, ® = H,.

Lemma 1.1. The operators K, A, A* are completely continuous in H,.
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The proof for the operator K is given in [4]. For A and 4* it is exactly the same.

Lemma 1.2. The problems of determining the generalized eigen-vectors defined in

(1.9)-(1.11) are equivalent to the corresponding operational equations
v=AKv, u=2»37u, w=A>A*W (1.15)

The validity of this lemma follows immediately from the definitions of the generalized
eigen-vectors and the operators X, 4, A*.

Lemma 1.3. The operator 4 is a Fréchet differential of the operator X at the point
v=0.

Proof. It is necessary to show that
| Kua — Au llzr,
flallg,

From (1.12) and (1.13) we conclude that

lim =0 for Jufg,—0 (1.16)

D
We shall set @ = Ku — Au in (1.17). Evaluating the right-hand side of (1.17) by
means of the Hilder inequality with indicesp, = 4, p, = 2, pg = 4 and applying
the imbedding inequality (1.8), we obtain

Ju; _ .
(Ku _Au,o)mz_§)uka—xk®id:c_%uxrotu ®dz (117

|Ku — Aulg? < [ule, |rot ul,|Ku — Auf, < c&fuf? [Ku — Aulg,
Thus
|Ku — Auly, < c2ula? 18
and hence (1.16) follows.
Lemma 1.4. The operator A* is the conjugate of the operator 4 in H,.

Proof. Let W and D be arbitrary vectors from H,. Integrating (1.14) by parts, we find

Bvoi

oD,
(A* w, D)y, =— gwi [vo,,m 4 O axk]dx = (w, A®)g. (119

which proves the lemma.

We can now apply the theory of bifurcation of solutions of non-linear operational
equations (1] to the determination of stationary flows which are different from (1.2).

The real number A, is called a point of bifurcation of the operator X, if for any
€, 8> 0 a characteristic number A of the operator K can be found such that |A — A < €
even though ‘Wllﬂx < 8 for some eigen-vector V of the operator K which corresponds to this
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characteristic number, Only the characteristic numbers of its Frechet differential at zero,
the operator 4, can be points of bifurcation of the operator K.

In the case under consideration a theorem of M.A. Krasnosel’skii f11 gives the follow-
ing: let Ag be a characteristic number of the operator K having odd multiplicity. Then the
number Ay is a point of bifurcation of the operator K ; moreover, a continuous branch of

eigen-vectors of the operator K corresponds to this point of bifurcation.

We shall explain the concepts applied here. Let Ao be a characteristic number of the
operator A and U be any of the eigen-vectors corresponding to it. We shall consider the
following problem:

u=>MAu, u, =ArAu +uy ..., U =hkdu + u,y, ... (120

As is well known, the complete continuity of the operator 4 implies that only a finite
number 7 of them are resolvable. In this connection r is called the rank of the eigen-vector
u.

If r =1 we shall say that the eigen-vector U is simple. The vectors u;, Uy, . . ., Up—y
are called adjoints to the eigen-vector u. The linear envelope of all the eigen-vectors and
adjoint vectors corresponding to the given characteristic number Ao is called the invariant

subspace of the operator A which corresponds to the characteristic number Ao

The dimension n of this subspace is called the multiplicity of the characteristic

number Ao.

If n =1, A is then called a simple characteristic number; if n > 1, Ao is called a

multiple characteristic number.

Something can be learned about the spectrum of the operator K (i.e., about the total-
ity of its characteristic values) with the help of the following consideration. For every A
obtained from the characteristic numbers of the operator 4 the index of the stationary point
v =0 of the vector field (/ ~ K) v is equal to unity in absolute magnitude and changes sign
when A passes through an odd-multiple characteristic number of the operator A. On the
other hand, the calculation of the rotation of the vector field I — K on spheres of large
radius turns out well in many cases.

For example, in [4] it is shown to be equal to +1, if the vector flux & through every
component of the boundary S is equal to zero. In this case we obtain (cf. [11) that the
interval between two characteristic numbers of the operator 4, where the index of the

stationary point V=0 is — 1, entirely contains the spectrum of the operator K.

1.2. On determining the multiplicity of a characteristic number. It was shown above
that to prove the existence of a point of bifurcation of the operator K it is necessary
firstly to establish that the operator 4 has a real characteristic number and secondly to

show that it is an odd multiple. But the operator is not self-adjoint and, in general, can not
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have real characteristic values. For example, if v, (x) represents the motion of the fluid

as a solid body, then real eigen-values do not exist. Moreover, in this case the stationary
solution (1.2) is unique for any y (these facts follow immdediately from (1.9) and (1.10) if
it is assumed here that 0 = v, O = u respectively, and if it is noted that the right-

hand sides now vanish).

Sometimes it is convenient to consider the operator 4 on the complex envelope H, of
the space H, and to use the following simple lemma in establishing the reality of an eigen-

number and the simplicity of the eigen-values.

Lemma 1.5. Let A be a characteristic number of a real (i.e., transformed real
vectors in the system) linear operator 4 acting in H, . In order that A; be real and have
the rank 1, it is necessary and sufficient that to every eigen-vector U with characteristic
number A there correspond at least one eigen-vector W of the conjugate operator A* which

has the same characteristic number and which is not orthogonal to u

(u, W)I-I, =+ 0 (1.21)
Proof. For the proof we note that a necessary and sufficient condition for solving the
equation
u = Aedy; +u (1.22)
is the satisfaction of the equality
(u, W)y, = 0 (1.23)

where W is any solution of the equation w = A *A*W. If Ao is real, then Ay* = A,,

and the need for condition (1.21) is demonstrated.

Now let (1.21) be satisfied. Then we have

1 (1.24)

Ao
(U, Wi, = (oA, Wy, = ho (W, A*W)r, = Ao (u, 5-w) = 75 (8, W)z,
and, since (U, W)y, 5= 0, we obtain Ay = Ay*. From (1.21) the unsolvability of equation

(1.22) now follows ; hence, u is a simple eigen-vector. The lemma is proved.

It is important to note that approximate values of A, and of the eigen-vectors can be
used to check condition (1.21). This, incidentally, permits the existence of real positive
eigen-values in the instability spectrum of Couette flow to be established; in [6] eigen-

values with a positive real part were found.

Broad classes of linear operators with simple eigen-vectors exist, such as, for ex-
ample, the self-adjoint operators. However, even for such operators the calculation of the
multiplicity of an eigen-number is a difficult problem. As an example we shall consider the
problem of the eigen-values for *he Laplace operator in the rectangle {0 <{ z < 7t/ ,

0 < y < n} with the conditic. t-:* the function vanish on the boundary. The eigen-values
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are the numbers Ay = — (@22 + B) (k, 1 =0,1,2,.. ;Aq 5+ 0). lfatis
irrational, then they are all simple. For rational a? multiple eigen-values can also be
found. Thus for @ =1 all of the A;; with k % ! are multiples.

Sometimes the uniqueness of an eigen-vector can be obtained by narrowing down the

space in which there is a solution. For example, let the problem
W =—A@w+u), u(—a)=u@), u(—n =u(x) 129
be solved.

Turning to the operator d?/dx?, it can be reduced to an equation with a completely
continuous operator. The problem on the eigen-values of this Fréchet differential is equi-
valent to the boundary value problem (1.25) with the u* term discarded. The characteristic
values will be A, = k? and the eigen-functions Q. = sin kz, @i, = €08 kZ correspond
to each of them. Since the rank of )\k is equal to 1, we obtain that its multiplicity is equal
to x. However, if solutions of (1.25) which are odd with respect to x are sought, then the
function ¢k is ‘eliminated’, the eigen-values A, become simple and each of them can be
affirmed as a point of bifurcation.

2. An example of non-unigueness of a stationary flow.

2.1. Solutions of the two-dimensional stationary Navier-Stokes equations. We shall

consider the equations

VAV = (v:.y) v + VP — F, divv =20 (2.1)

under the condition of periodicity of the velocity with respect to x, y with the periods
21 /ey, 211 respectively. In addition, we shall require that the condition

s\ v (2 y) dedy =b 2.2
D

be satisfied, where D is the rectangle {| z| < 7t / @y, | ¥ | < 7}, and b is an unknown

vector. We shall take F; = — 7 siny, F, = 0, b = 0. By introducing the stream

function i the problem is reduced to determining a solution of the equation
VARY = P, — YL, — 7 COS Y (2.3)

which is periodic with respect to x, y with the periods 211 /&y, 27t. In order to fix the

arbitrary additive in the determination of i, we shall further introduce the condition

g vdzdy = 0 2.4)
D

The problem (2.3) and (2.4) obviously has the solution

Yo=—171/vcosy (2.5
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The substitution

¢=7/v(q)o—cosy)

redaces equation (2.3) to the form
A%, = A [PoyAPox — PoxliPyy T Sin y (9 / 02) (Apy + @)l (2.6)
The corresponding linearized problem has the form
Al = Asiny (0/07) (e +09) (=1 (2.7
the adjoint problem is

AMD = — A (1 + 2) (8/ 82) (@ sin y) (2.8)

The functions g, ¢, @ must finally satisfy the condition of periodicity with respect
to x, y and the condition (2.4).

The concepts of the previous section apply to the investigation of the problem (2.1)-
(2.3). The only requirement is to define the space H, in a different way : instead of
vanishing on the boundary it should be required that the vectors of H, now satisfy the con-
dition of periodicity with respect to %, y as well as the homogeneous condition (2.2). How-

aver, it is more convenient to deal with stream functions here.

We shall define the Hilbert space H, as the closed set of smooth functions, which
satisfy condition (2.4) and are periodic with periods 27 /a,, 21 with respect to %, y and
by the norm, generated by the product

(bry ¥, = | DO, dz dy

D

We shall define the operators L, B, B* which act in H,, requiring that the integral

identities

(Ly, ®)m, = | 20 @D, — 9,0.) dzdy —{ siny (&g + ¢) T, dwdy
D D
(B, Oy, = —{ sin y (89 + ¢) Do dzdy
D

(B*q, D), = S (1 + A) (9 sin y) D, dz dy

D

be satisfied for any @, o= Hz- As in section 1 (cf. lemmas 1.1-1.4), it is easily
verified that L, B, B* are completely continuous, B is a Fréchet differential of the oper-
ator L, B* is adjoint to the operator B, and the problems (2.6), (2.7), and (2.8) are equi-
valent, respectively, to the operational equations
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9o = AL, (2.9)

@ = ABg (2.10)
—_— L ]

D =AB*® (2.11)

2.2. The condition of uniqueness and stability. Theorem 2.1. Let ao 3> 1. Then, what-
ever > 0 and y are, the stationary solution (2.5) is unique, and all solutions of the un-
steady Navier-Stokes equation

DY | 0t + PyApe — Py — VAR = — 1 cOS Y (2.12)

which are periodic with respect to x, y with periods 25 / ay, 250 tend toward it by the
norm H, as t + o0,

Proof. We shall assume that { =P, + @ in (2.12). The equation which
O = @ (z, y, t), satisfies has the form

282 4 O,AD,— DA, + L sin Vg (DO + ®) ~ v =0 (213

Multiplying this equation AQ -} (@ and integrating over the rectangle D, we obtain

337§ 100y — (VOpldady + v{ (V2D — (AOP dedy =0 (210
D D

We shall expand P in a Fourier series in x, y

~+oo
d (J?, Y, t) — 2 Cki exp["(aokx‘*l‘ll)] (2.15)
k,l=—00
We then obtain
Jp={ (VO dzdy =57 s :
f={ (VO dady =5 @ + ) [en|
k,l
Ip=\ (00rdedy =L 5 @ik + P cupp (2.16)
D k,l
T =S (VAD) dady = 2551 (@K + BY?|cn P
D k.l

The inequalities
JEKIEK TS (2.17
K12<Ka2 (K1’=J22—J1” Kzz =Jsz""’)g)

(2.18)
ig? —1
K> =74 (2.19)
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are easily derived from (2.16) for ao > 1.

From (2.14) we derive the relation
dK
%_;_t-Kl’ = — vK2 < — VK2, _d_tl'< — vk, (2.20)
from which follows
K,(t) < e K, (0)

(2.21)
For ae > 1 it follows from (2.19), (? 21) that
() = S} (AD)P dzdy —0 as t-s o0 (2.22)
and the theorem is proved in this case.
1f ag= 1, we then obtain
@, = ;8" + 1,06 + cue®V + Co,-1€
O = d’l + ¢|v O, = 2 it expi(kx+lu) (2.23)
E+t>1
We note that
(2.24)
K =22 S0 (04 D)8+ —1) | ouf > | (A0) dzdy = 32 ()
do 2 s
PR D
From (2.21) it follows that J, () +o0 0 as ¢ +00. But J,2 = J2 4 J 2% where
J (@) = S O *dzdy (2.25)

D

Hence, it remains to prove that /o (¢) + 0 as ¢t -+ 0. Substituting (2.23) into (2.13),
multiplying the result by ®, and integrating over D, we obtain

s e+ ={ 20, (@0, — ©,0.) dzdy 2.26
D
Using the simple bound
D2+ ®,,? <§:1—ti J gt (2.27)

the Buniakovskii inequality and the inequality (2.17) for ®,, we derive

1
n V2

from (2.26) and taking (2.24) and (2.21) into account this gives the bound

Jo Jo*

1 d
5 a5 Jo’ +vo? <<

J. (& J vt V2 g 1—e™
oS To(O) e+ TEESO) e (2.28)
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Hence Jo (t) 0 as t + 0. The theorem is proved.

2.3. The spectrum of the linearized problem and bifurcation. Every non-trivial solution
of the problem (2.8) which corresponds to a given characteristic number A is a linear com-

bination of solutions of the form

+0
D — eiax z (— 1)rcnet™ (2.29)

n=—00

where Q. = ko (k is an integer) and the coefficients ¢, satisfy the infinite system of linear
algebraic equations (1 == 0, +1, +2,.))

(60 = 2 _ (toarp ) (2.30)

@ntn + Cny — Capy =0 7 a(aF—1 1 nd)

We shall seek solutions of the system (2.30) such that c. 0 as |n| +00. From (2.30)
it then follows that |7 lkC-n — 0, also, whatever k is. Setting

we reduce (2.30) to the form
an +1/pn = Pnn (2.31)

It follows from (2.31) that for any &

1
Pk—_a_k'-}— “k+1+---

The continued fraction (2.32) converge since G, ++00as n oo (cf. [7]). From (2.31)

(2.32)

there follows another expression for p;

1
= ak-1 + t
Px 1 4, + T ... (2.33)
Equating the right-hand sides of (2.32) and (2.33) to each other with k = 1, we obs .in
the following equation for determining the characteristic values A, taking into account

that a_,=a,:

L T =f(
2 “1+_a;+—:—'3+.” ) (2.34)

It is easy to verify that the right-hand sides of (2.32) and (2.33) coincide for all &k
provided that (2.34) is satisfied. If A is a real root of equation (2.34), then the non-trivial
solution of the system (2.30) with ‘cn' +0 as ln‘ - o0 is unique to within a constant factor
and is given by the formulas

co=1,n=pP1P5. .. Pn (n>>0)

- (2.35)
cn = (PoP-1- - - Pns1) ™t (n<0)



538 V.I. ludovich

For definiteness, let A> 0, and a > 0. From what comes later (cf. lemma 2.3) it
follows that @ must be less than 1. Then a4 <0 and a; >0 for & # 0. Now from (2.32) for
k> 0 and from (2.33) for k <0 it follows that

1
o | <= —0 (k — -+ o0)
k (2.36)

Px > Ax-1 — + o© (k — — o0)

With the help of (2.36) it is easy to verify that (2.35) gives a solution of the system
(2.30) with |cn| +0as ln‘ 00,

Equation (2.34) is derived in {2] ; there it is also shown that . £#0(n=0,
F 1, ...) for any solution with Icnl +0 as |n| -+ o0 and, hence, the introduction of the

quantities p is valid.

Lemma 2.1. Let 0 <a < 1. Equation (2.34) then has a positive root A = A(a) and,

moreover, has only this one root.

Proof. We have

ao 1 as

T T TT—w (2.57)

For f (A} (A> 0) the bound

1 A 3 (2.38)
F W< g =T @iy
is valid.

From (2.37) and (2.38) it is seen that — }/,q, > | (M) for small A =0. We shall
show that the converse inequality is valid for large A. For this it is sufficient to establish
that

Af(A) > + o as A—+ oo

But for f (A) the bound
ay+as+ ...+ ay, +0(A7?)

/(M>_:T+—:;+"‘+¢T:;: 00 (2.39)
obtains.
Setting
we derive from (2.39) that .
Lim Af () > D) by as A oo (2.40)

k=1
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The right-hand side of (2.40) tends to infinity as n » oo. Therefore, A,f A) - + oo
as A - + o0,

Thus, equation (2.34) has a positive root. In order to prove its uniqueness, we shall

show that A f (A) is a monotonically increasing function. We have

MM =1—
7t a o

1
Ias +

(2.41)

When A increases, the terms of this fraction with the odd numbers decrease and the

terms with the even numbers do not change. Hence, A f (A) increases. The lemma is proved.

Lemma 2.2. The positive root A = A (@) of equation (2.34) increases monotonically
with a for 0 <a <1.

Proof. We shall rewrite (2.34) in the form

I S A
1— a2 a-"al—l——a_—sg+ 1

adas + . .

The left-hand side of this equation is an increasing function of a.. The proof will be

1
= MM (2.42)

complete if it is established that the right-hand side of (2.42) is a decreasing function of
¢. And this follows from the fact that the continued fraction (2.42) decreases when its
odd terms increase and its even terms decrease and, in addition, from the fact that a®a,

increases with a

0 4 2 2
o o, = M_:gj_;gﬂ) Qot -3 — N2+ (m—1)I>0  (>1)

and a-3a, decreases

a __ 4 (a? + n?) 2. 272
5@ Pan=— T @ =TT [e* 4 3n%a? 4 2n% (n* — 1)1 <O (n>1)

Lemma 2.3. As a -1 the positive root of equation (2.34) A = A (@) — + oo. As
a —0 the root A (o) — V2. For & >> 1 there are no real characteristic numbers.
Proof. By virtue of (2.34) and (2.38)

[ors

o LEPY S
Tma- 2 M= MO<FVGIm
and, hence,

2 (a24-1)?
O 249

Further, from (2.34) it follows that
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1 2 t (b, = hay)

— I et — ———-— Tl’ ’rl = = 1
A3 bobr Ab P (2.44)

Passing to the limit as @ + 0 in (2.44) and noting that

0<1|<_31%2—-—->0 (a—0) bobl——)_'1

(a—-»O)

we obtain
M)~ V2 as a0

Finally, the non-existence of a root for @ > 1 follows immediately from (2.34) since
in the case under consideration the left-hand and right-hand sides of the equation have
different signs for any real A. If @ = 1, then equation (2.34) has no meaning but it follows
from (2.30) that c, = 0 and, after finding c,, ¢y, ... successively from (2.30) forn =1,

2, ..., we obtain that €, ++o0asn»o0, Hence, there are no real characteristic numbers

in this case also. The lemma is proved.

Lemma 2.4. Let 0 <ay < 1. Then equations (2.11) and (2.10) have exactly [1/ad
positive® (and as many negative) characteristic numbers. Fach of them has a multiplicity

equal to 2.

Proof. Letot = agk < 1;k is a positive integer. Then equation (2.11) has the eigen-
function (2.29), where the ¢ are defined by the equalities (2.35), and the characteristic
number A = A (®¢k) which corresponds to it is a positive root of equation (2.34) (cf.

lemma 2.1).

The system (2.30) is invariant with respect to the substitutions a » — a,
¢n — (— 1)"cyn. Therefore, the eigen-functionr obtained from this substitution into (2.29)
will also correspond to the same characteristic number A = A (®tyk) . From lemmas 2.1

and 2.2 it follows that there are no other eigen-functions with the eigen-number A (yh) .

We shall establish that the multiplicity of A (@4k) is equal to 2, if we show that its
rank is equal to 1. The real eigen-functions have the form @ = Clq)x + c2®2, in which

B,= f () €55 + J* () e, D, = i [f (y) e — f* () etox]  (2.49)

where

+00
F) = 2 (— )" cpeiny (2.46)

n=—o

* [1/a,] denotes the number of positive integers less than 1/a,.
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It is immediately verified that from the eigen-functions of problem (2.7) or equation
(2.10) there will be

¢, = g (y) €= + g* (y) e, @, = i [g () o= — g* (y) e**=] (2.47)

where

_c“

o0
gy) = Z dne™™, dn = od - n?—1
n=—co0
We shall note one more relation needed for what follows. Multiplying (2.7) by AQ + ¢

and integrating over D, we obtain

g (7 Agx)? dzdy — S (AQe)rdzdy =0 (k=1 2) (2.48)
D D

Taking (2.47) into account, we rewrite the equality (2.48) in the form
o0
Y @+ )+t —1)dat =0 (2.49)
n=—0oo
We shall now calculate the quantities (@;, Dy)p,. We have
(2.50)

~+o0
@0 Oar, = § 09y A0, dady =2 3 (—1)™1 (n + 0 @2 + nd — 1) da?
D n=—0o
or, taking (2.49) into account,

@p O, =2 3 (W Aa) @+ = )d>0
n=1,3,5,.e¢

Later, we shall convince ourselves directly that

(@1 Pu, = (7 (Dl)H, =0 (2.52)

Thus, if ¢ = ¢,@, + ¢, 9, (Cl, Cy are real constants) is any eigen-function of pro-
blem (2.9) and P = cl(I)l + cad)z, then

(P, (D)Hn = c12 ((Pv (Dl.) + czz ((Pzt @,) > ol (2.53)

According to lemma 1.5 this means that the rank of the eigen-number A = A (&tpk)
is equal to 1. Thus, the multiplicity of this characteristic number is equal to 2, The lemma
is proved.

Lemma 2.5. The rotation of the vector field Q,p = I — AL) 9 [cf. (2.9)] on a

sphere of sufficiently large radius with center at 0 is equal to + 1.

Proof. It is sufficient to prove [1] that the deformation
Qo= (I - (0t )

brings about the homotopy of the vector field {2, and the unit field 2, = @. To do this
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it is necessary to establish only that all of the zeros of the field Qt lie in a sphere of
known radius (which is independent of ¢). But if Q¢ = 0, then, according to the defini-
tion of the operator L, we have
(2.54)
(9. Dy, = 1§ 29 @0, — 9,0 dedy — | siny (89 + ¢) Dudedy
D D
for eny @ = H,. Setting

=%+ cosy, ® =1
in (2.54), we find

[ols,' = {A cos ydzdy (2.59
D

from which, applying the Buniakovskii inequality and the inequality “Q " << “‘lﬂl +
+ “005 yll, we conclude that

lolg, <2|cos yly, = 21V 27a, (2.56)

This completes the proof of the lemma.

Theorem 2.2. Let 0 <o, < 1. Then there exist exactly m = {1 /a,] positive
numbers 0 < A, << Ay << ... < Ap, which are points of bifurcation of equation (2.9).
To each of them there corresponds a continuous branch of eigen-functions of equation (2.9)
which are non-trivial solutions of problem (2.6). The numbers — }‘11 — }\,2, e ey — Ay
are also points of bifurcation. The spectrum of equation (2.9) contains all of the intervals
(Ags Ag)y (Agy Ay - -+ «y (Agkg, Azk), and also the intervals which are symmetric to them

the negative semi-axis. If m is odd, then it also contains the intervals (—oc, —A,,)

(Am,y o).

Proof. Let H,°be a subspace of H,, consisting of functions whick satisfy the condi-
tiomnP (— z, — y) = P (2, y).It is immediately verified that the operators L, B, B*
act in H,c: In addition, the spectrum of operator B considered in Hzocoincides with the
spectrum of operator B on all of #; and consists of the numbers - A (a,), F A (20p), . -
F A (moyy), where m = [1 /a,] (cf. lemma 2.4). To a characteristic number
A = A (ook) (kK = 1, 2, . . ., M) there corresponds only one eigen-function ®,, defined
in (2.45). The rank of A, according to lemma 2.4 is equal to 1. Thus, all of the character-

1

.y

istic numbers - A’l’ + }vz, « « «» F Ay, are simple. Hence, according to a theorem of
M.A. Krasnosel’skii [1] stated in section 1, all of them are points of bifurcation and to
each of them corresponds a continuous branch of eigen-functions of the operator L.

If A belongs to one of the intervals indicated in the condition of the theorem, then the
index of the fixed point ¢b = 0 of the operator L is equal to ~ 1. And therefore, according
to lemma 2.5, the rotation of the vector field (/ -~ L) ¢ on large spheres is equal to +1 for

such A that correspond to non-trivial solutions of equation (2.9). The theorem is proved.
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2.3. An example of the generation of a periodic regime. We shall consider the problem
(2.1), (2.2) with the previously used quantity F = (— 7 sin y, 0) and withh = (U, 0).
This problem has the stationary solution

vy =7/vsiny + U, Vgp =0, Py =20 (2.57)

The velocity vector v, has the stream function

Py = —%cosy + Uy

If we assume in (2.12) Y = 1P," + D, we obtain the periodicity conditions for
O (z, Yy, t) with respect to x and y with the periods 27t / @y, 27 and the equation

(2.58)

N2+ 0,00, — OAD, + UAD, + Lsiny 2 (AD + @) — vAXD = 0

at
Theorem 2.3. For all values of A for which equation (2.6) has non-trivial solutions,

equation (2.58) has non-trivial solutions which are periodic with respect to time.

Proof. For some A let there be a non-trivial solution @y (Z, ¥) of equation (2.6) and
let it have a period 27U / & with respect to x (@ is a multiple of ag).

Then, it is easy to be convinced that
O = @y (z — Ut, 3) (2.59)

is a solution of problem (2.58) which is periodic with respect to time with period
® = 21 /aU. The theorem is proved.

We note that the flow in (2.59) is nothing other than stationary flow in a coordinate

system which moves along the x-axis with constant velocity U.

We shall now make the coordinate system also move along the y~axis with velocity

V. It is not difficult to be convinced that the flow with the stream function
P = — %cos (y—V) + Uy —Vz+ @ (x— Ut,y —Vt) (260

presents an example of a conditionally periodic flow arising when there is loss of stability

of a flow which is periodic with respect to time with the stream function

Yo = ——cos(y —~ Vi) + Uy —Vz
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